Stem cell technology has provided hopes of reconstructing tissue to fix broken or damaged neural tissue for a long time.

“Our findings represent an important conceptual advance in stem cell research,” said Wenbin Deng, principal investigator of the study and associate professor at the UC Davis Department of Biochemistry and Molecular Medicine. “We have bioengineered the first generation of myelin-producing cells with superior regenerative capacity.”

The brain is made up predominantly of two cell types: neurons and glial cells. Neurons are regarded as responsible for thought and sensation. Glial cells surround, support and communicate with neurons, helping neurons process and transmit information using electrical and chemical signals. One type of glial cell — the oligodendrocyte — produces a sheath called myelin that provides support and insulation to neurons. Myelin, which has been compared to insulation around electrical wires that helps to prevent short circuits, is essential for normal neural conduction and brain function; well-recognized conditions involving defective myelin development or myelin loss include multiple sclerosis and leukodystrophies.

In this study, the UC Davis team first developed a novel protocol to efficiently induce embryonic stem cells (ESCs) to differentiate into oligodendroglial progenitor cells (OPCs), early cells that normally develop into oligodendrocytes. Although this has been successfully done by other researchers, the UC Davis method results in a purer population of OPCs, according to Deng, with fewer other cell types arising from their technique.

Original source: