By observing the behavior of a type of cells in the brains of living rodents, neuroscientists at John Hopkins found that these cells remain very active in the adult brain, where they turn into cells that protect nerve fibers and help form scars that aid in repairing damaged tissue.

“There is a widely held misconception that the adult nervous system is static or fixed, and has a limited capacity for repair and regeneration,” says Dwight Bergles, Ph.D., professor of neuroscience and otolaryngology at the Johns Hopkins University School of Medicine. “But we found that these progenitor cells, called oligodendrocyte precursor cells (OPCs), are remarkably dynamic. Unlike most other adult brain cells, they are able to respond to the repair needs around them while maintaining their numbers.”

OPCs can mature to become oligodendrocytes — support cells in the brain and spinal cord responsible for wrapping nerve fibers to create insulation known as myelin. Without myelin, the electrical signals sent by neurons travel poorly and some cells die due to the lack of metabolic support from oligodendrocytes. It is the death of oligodendrocytes and the subsequent loss of myelin that leads to neurological disability in diseases such as multiple sclerosis.

During brain development, OPCs spread throughout the central nervous system and make large numbers of oligodendrocytes. Scientists know that few new oligodendrocytes are born in the healthy adult brain, yet the brain is flush with OPCs. However, the function of OPCs in the adult brain wasn’t clear.

To find out, Bergles and his team genetically modified mice so that their OPCs contained a fluorescent protein along their edges, giving crisp definition to their many fine branches that extend in every direction. Using special microscopes that allow imaging deep inside the brain, the team watched the activity of individual cells in living mice for over a month.

The researchers discovered that, far from being static, the OPCs were continuously moving through the brain tissue, extending their “tentacles” and repositioning themselves. Even though these progenitors are dynamic, each cell maintains its own area by repelling other OPCs when they come in contact.

Original source: http://www.hopkinsmedicine.org/